CD31+ cells represent highly angiogenic and vasculogenic cells in bone marrow: novel role of nonendothelial CD31+ cells in neovascularization and their therapeutic effects on ischemic vascular disease.

نویسندگان

  • Hyongbum Kim
  • Hyun-Jai Cho
  • Sung-Whan Kim
  • Bianling Liu
  • Yong Jin Choi
  • JiYoon Lee
  • Young-Doug Sohn
  • Min-Young Lee
  • Mackenzie A Houge
  • Young-sup Yoon
چکیده

RATIONALE Bone marrow (BM) cells play an important role in physiological and therapeutic neovascularization. However, it remains unclear whether any specific uncultured BM cell populations have higher angiogenic and vasculogenic activities. Moreover, there has been controversy regarding the vasculogenic ability of BM cells. OBJECTIVE Preliminary flow cytometric analysis showed that CD31, traditionally a marker for endothelial cells, is expressed in certain nonendothelial BM mononuclear cells in both human and mouse. Based on the conserved CD31 expression in the axis of hematopoietic stem/progenitor cells (HSC/HPCs) to endothelial cells, we further sought to determine the comprehensive vasculogenic and angiogenic characteristics of human and mouse BM-derived CD31(+) cells. METHODS AND RESULTS Flow cytometric analysis demonstrated that all CD31(+) cells derived from BM were CD45(+) and expressed markers for both HSC/HPCs and endothelial cells. Comprehensive gene expression analyses revealed that BM-CD31(+) cells expressed higher levels of angiogenic genes than CD31(-) cells. Endothelial progenitor cells, as well as HSC/HPCs, were almost exclusively confined to the CD31(+) cell fraction, and culture of CD31(+) cells under defined conditions gave rise to endothelial cells. Finally, injection of CD31(+) cells into ischemic hindlimb repaired ischemia, increased expression of angiogenic and chemoattractive factors, and, in part, directly contributed to vasculogenesis, as demonstrated by both 3D confocal microscopy and flow cytometry. CONCLUSIONS These data indicate that BM-CD31(+) cells represent highly angiogenic and vasculogenic cells and can be a novel and highly promising source of cells for cell therapy to treat ischemic cardiovascular diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human peripheral blood-derived CD31+ cells have robust angiogenic and vasculogenic properties and are effective for treating ischemic vascular disease.

OBJECTIVES This study aimed to determine if CD31 is a novel marker of a circulating angio-vasculogenic cell population and to establish the cells' therapeutic effects on experimental ischemia. BACKGROUND Emerging evidence suggested that therapeutic mechanisms underlying various bone marrow-derived cells are due to paracrine effects. Furthermore, the vasculogenic potential of these cells is un...

متن کامل

Cardiovascular repair with bone marrow-derived cells

While bone marrow (BM)-derived cells have been comprehensively studied for their propitious pre-clinical results, clinical trials have shown controversial outcomes. Unlike previously acknowledged, more recent studies have now confirmed that humoral and paracrine effects are the key mechanisms for tissue regeneration and functional recovery, instead of transdifferentiation of BM-derived cells in...

متن کامل

Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives.

BACKGROUND Adipose tissue development and remodeling are closely associated with the growth of vascular network. We hypothesized that adipose tissue may contain progenitor cells with angiogenic potential and that therapy based on adipose tissue-derived progenitor cells administration may constitute a promising cell therapy in patients with ischemic disease. METHODS AND RESULTS In mice, cultur...

متن کامل

Human Mesenchymal Stem Cells and Their, Clinical Aapplication

There are two main categories for stem cells a cording to their origin: Embryonic Stem Cells and Adult Stem Cell. Mesenchymal stem cell, supporting hematopoetic stem cells in bone marrow, can regenerate tissues such as bone, cartilage, muscle, tendon and fatty tissue. These cells were recognized for the first time by Friedenstein and Petrokova who could isolate theme from rat bone marrow.Mesenc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 107 5  شماره 

صفحات  -

تاریخ انتشار 2010